The yeast ubiquitin ligase SCFMet30 regulates heavy metal response.

نویسندگان

  • James L Yen
  • Ning-Yuan Su
  • Peter Kaiser
چکیده

Cells have developed a variety of mechanisms to respond to heavy metal exposure. Here, we show that the yeast ubiquitin ligase SCF(Met30) plays a central role in the response to two of the most toxic environmental heavy metal contaminants, namely, cadmium and arsenic. SCF(Met30) inactivates the transcription factor Met4 by proteolysis-independent polyubiquitination. Exposure of yeast cells to heavy metals led to activation of Met4 as indicated by a complete loss of ubiquitinated Met4 species. The association of Met30 with Skp1 but not with its substrate Met4 was inhibited in cells treated with cadmium. Cadmium-activated Met4 induced glutathione biosynthesis as well as genes involved in sulfuramino acid synthesis. Met4 activation was important for the cellular response to cadmium because mutations in various components of the Met4-transcription complex were hypersensitive to cadmium. In addition, cell cycle analyses revealed that cadmium induced a delay in the transition from G(1) to S phase of the cell cycle and slow progression through S phase. Both cadmium and arsenic induced phosphorylation of the cell cycle checkpoint protein Rad53. Genetic analyses demonstrated a complex effect of cadmium on cell cycle regulation that might be important to safeguard cellular and genetic integrity when cells are exposed to heavy metals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase

The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control1. With prevalent hyperactivation of the mammalian TOR (mTOR) pathway in human cancers2, strategies to enhance TOR pathway inhibition are needed. We used a yeast-based screen to identify small-molecule enhancers of rapamycin (SMERs) and discovered an inhibitor (SMER3) of the Skp1-Cullin-F-box (SCF)Met30 ubiquiti...

متن کامل

The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response

The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis. Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was id...

متن کامل

Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana.

The plant hormone auxin regulates diverse aspects of plant growth and development. We report that in Arabidopsis, auxin response is dependent on a ubiquitin-ligase (E3) complex called SCFTIR1. The complex consists of proteins related to yeast Skp1p and Cdc53p called ASK and AtCUL1, respectively, as well as the F-box protein TIR1. Mutations in either ASK1 or TIR1 result in decreased auxin respon...

متن کامل

Function of the ubiquitin-proteosome pathway in auxin response.

Proteolysis of important regulatory proteins by the ubiquitin-proteosome pathway is a key aspect of cellular regulation in eukaryotes. Genetic studies in Arabidopsis indicate that response to auxin depends on the function of proteins in this pathway. The auxin transport inhibitor resistant 1 (TIR1) protein is part of a ubiquitin-protein-ligase complex (E3), known as SKP1 CDC53 F-boxTIR1 (SCFTIR...

متن کامل

Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter.

The yeast ZRT1 zinc transporter is regulated by zinc at both transcriptional and post-translational levels. At the post-translational level, zinc inactivates ZRT1 by inducing the removal of the protein from the plasma membrane by endocytosis. The zinc transporter is subsequently degraded in the vacuole. This regulatory system allows for the rapid shut off of zinc uptake activity in cells expose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2005